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ABSTRACT

Power grid expansion planning is a challenging problem that typically considers the facility location, sizing,
and transmission line upgrade aspects, with the objective of minimizing the upgrade and operational costs.
The consideration of fairness and equity between the populations being served by the power grid has not
been addressed previously in the literature. These issues are of special interest regarding the power grid
infrastructure in developing countries, where certain populations might be “last in line” to be connected to the
grid. In this paper, we develop a power grid expansion optimization model that considers both effectiveness and
equity, given a budget constraint on upgrade expenditure. Effectiveness is measured by the deprivation costs
of all populations served by the power grid, while equity is measured by their Gini mean absolute difference.
Node upgrade rules are applied, and the upgrade plan is provided over a given planning horizon.

We optimally solved our model for small instances and performed sensitivity analysis on its parameters. We
then developed an LNS (Large Neighborhood Search) heuristic for solving large instances and using publicly
available data. Additional instances are generated based on the Myanmar power grid. Our analysis shows that

the LNS can provide good solutions relative to a greedy approach.
The approach taken in this paper can be applied to a wide range of infrastructure planning problems in
which both effectiveness and equity should be considered.

1. Introduction

Electricity is a daily necessity; in developed countries, it is supplied
to the whole population. However, the supply of electricity in develop-
ing countries, where most of the population lives in rural areas, is often
a privilege of the few. Technological developments of the last decade
and the decreasing costs of technology allow us to provide these areas
with solutions ranging from small personal renewable energy sources,
energy storage, and micro-grids supplying whole villages to main power
grid connectivity.

These different infrastructure solutions come with varying prices
and benefits. For example, photovoltaic cells can provide electricity
during the daytime. Coupled with investments in energy storage, the
supply can be extended to the night. Full grid connectivity is much
more expensive but can provide continuous supply.

The classical problem of power grid expansion planning has been
extensively researched, see, for example, Sarid and Tzur [1] and Ghad-
dar and Jabr [2]. However, these papers did not include any fairness
considerations. In addition, the classical problem assumes that all

consumers are initially connected to the grid, and the goal is to then
minimize the total infrastructure and/or generation costs, for example,
Hemmati et al. [3], and Mirkle-HuR et al. [4]. Another common
approach is to maximize the grid’s robustness, subject to budget con-
straints, for example, as in [5]. Unfortunately, in developing countries,
not all consumers are connected or will be connected in the near
future. Li [6] studies the interaction among three stakeholders: smart
distribution networks, microgrids, and customers, whose coordination
leads to a complex energy generation, storage, transaction, and con-
sumption problem. They propose two coordination schemes and offer
a mathematical model and solution method for each of them.

We find many similarities between the problem of planning a power
grid expansion in developing countries and the field of humanitarian
logistics, mainly the use of an objective that measures human suffering
and equity between populations. Equity considerations are introduced
via the objective function to balance two planning needs: effectiveness
and equity. Such considerations serve as a guide toward solutions that
also consider rural and non-central settlements. Specifically, areas that
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are not densely populated, and hence advancing them is less effective
in terms of influence on the entire grid and the number of civilians
affected by the upgrade.

In this paper, we consider the resource allocation problem for power
grid expansion in developing countries. The goal is to achieve effective-
ness with the expansion plan, i.e., to provide electricity as reliably as
possible and to a population that is as large as possible. To measure
effectiveness, we use the notion of deprivation costs — the equivalent
monetary costs of not providing electricity to a specific population.
The definition of deprivation costs is further explained in the literature
review, Section 2, and also explored in Section 3. In addition to ef-
fectiveness, we also consider equity in power grid expansion planning.
We measure equity by using the Gini mean absolute difference, which
reflects the fairness of a policy. The Gini mean absolute difference and
its relation to the Gini index are further explained in Section 3. The
upgrade plan includes different stages over a duration of 10-30 years
and the geographic layout of existing grid consumers.

An existing grid consumer cluster (i.e., a city, village, or other forms
of settlement) is represented by a node in our problem. A node’s current
and future states are referred to as tiers and define the type of electricity
supplied to the node. In our notation, a tier can represent a state such as
full grid connectivity, a micro-grid solution, or even a no-power state.
We need a node and its state over time to compute its deprivation costs.
These concepts are defined carefully in Section 3.

Based on the above definitions, we formulate an optimization prob-
lem that minimizes an objective that considers effectiveness and fair-
ness. The problem’s solution yields a complete upgrade plan that spec-
ifies to the planner what node should be upgraded each year and
to which tier. The goal is to achieve the minimum deprivation cost
combined with a weighted Gini mean absolute difference for equity
considerations. The problem adheres to constraints such as budget,
node precedence, and additional upgrading rules.

We demonstrate our method on a small instance (of 10-nodes),
which is solved to optimality, and develop an LNS meta-heuristic that
is applied on larger instances (100 and 200-nodes). The larger instances
are based on real-world data obtained from the Myanmar power grid,
i.e., datasets published in [7] (2014-2015), and supporting information
published by the World [8].

2. Literature review

As mentioned in the previous section, the problem of power grid
expansion planning has been extensively studied from some perspec-
tives (e.g., minimum cost, and robustness). However, the literature on
grid infrastructure for developing countries is not as abundant. This is
particularly the case in situations where both effectiveness and fairness
play an important role. Karsu and Morton [9] reviewed applications
of various OR problems in which measures of equity and balance
play an important role, for example, in vehicle routing, scheduling,
transportation, and supply chain design. According to Guo et al. [10],
the enormous growth of China’s solar sector is due to the strategy of
combining it with poverty reduction, especially in rural areas.

In the field of humanitarian logistics, extensive developments have
occurred in recent years. Holguin-Veras et al. [11] discussed post-
disaster planning and introduced the concept of deprivation costs: the
incurred costs of being deprived of a basic necessity, such as food,
water, or power supply, after an extreme disaster event. Their model
describes the hours, days, and weeks following a humanitarian disaster
and the actions needed to provide relief. Eisenhandler and Tzur [12]
used an objective function that includes a multiplicative combination
of 1 minus the Gini index and an effectiveness measure in the context of
food rescue via food bank donations. Gutjahr and Fischer [13] extended
the concept by considering another element of equity: the Gini mean
absolute difference (not to be confused with the Gini index or Gini
coefficient). They treated the post-disaster supply problem by defining
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the supply frequency as the decision variable. Cantillo et al. [14] sug-
gested an econometric approach (using a discrete choice experiment)
for estimating the deprivation cost functions.

Barbati and Piccolo [15] and Noham and Tzur [16] discussed vari-
ous additional equity objective functions or constraints in the context of
facility location. Donmez et al. [17] provided a comprehensive review
of the research on facility location problems in a humanitarian context,
including the type of facilities involved, the decisions that need to be
made, the criteria to optimize, and the solution method adopted.

Focusing on equity in infrastructure planning, Mostajabdaveh et al.
[18] considered the problem of positioning shelters for emergencies.
Their main consideration was the mean distance between opened shel-
ter locations and individuals with the objective of minimizing inequity
under uncertainty. In [19], the problem of equity in power grid design
was discussed from the firms’ perspective, i.e., when the market is
deregulated to several utility companies or distributors, such that each
firm has commercial viability. This perspective is very different from
the one we consider in this paper, which discusses equity from the
consumer’s perspective.

Flores et al. [20] analyze a 2021 Texas power crisis in which a large
portion of the population suffered a power shortage. Disparities during
this crisis are estimated using utility data, customer surveys, and spatial
analysis to compare the severity of the outage. Their analysis indicates
that an uneven burden of the power shortage exists. Similarly, Liévanos
and Horne [21] deal with the inequality of power grids from a resilience
perspective, i.e., the duration of electricity outages in the US compared
by various sociodemographic variables. They also indicate inequalities
that seem to derive from prioritizing specific assets (e.g., hospitals).

To the best of our knowledge, no study so far has examined equity
and fairness in power grid infrastructure planning. Thus, the current
paper brings a completely new perspective to this topic, using defini-
tions and performance measures that have already been developed for
pre-disaster and infrastructure planning in humanitarian logistics. In
particular, we adopt the approach that examines equity in the context
of the Gini mean absolute difference of deprivation costs. We suggest
a model for the optimization problem and conduct several numerical
experiments with that model.

The next section provides a detailed description of the problem we
consider. Section 4 details the LNS (Large Neighborhood Search) solu-
tion method we use for the larger instances. In Section 5, we present
numerical experiments on randomized and real-world based instances,
and then, in Section 6, we provide conclusions with possibilities for
future work.

3. Problem description and formulation

In the problem we consider, there exists a partial power grid, i.e.,
there are urban areas connected to the main power grid and rural areas
that are not connected and are either completely without electricity or
with limited electricity, which fulfills only a portion of the demand.
For example, a household may have electricity provided by a self-
sustained photo-voltaic cell, and a village might also be connected to a
micro-grid.

We represent the demand in the grid using nodes. A node may
represent a village, a city, or even an entire region (e.g., a cluster
of a few similar villages). Given the existing grid, we aim to find
an upgrade solution for the nodes, indicating which nodes should be
upgraded and when. The planning horizon itself may consist of a
duration of 10-30 years. The upgrade plan is subject to constraints
such as monetary constraints (a limit on the annual and on overall
spending), upgrade rules (which nodes can be technically upgraded),
and precedence constraints.

The nodes transition between states/tiers, where each node incurs a
deprivation cost according to the tier it belongs to. This represents the
cost for the population living at that node not being able to connect
to the power grid or having an unreliable power supply. We aim
to minimize the weighted average of the deprivation cost (over all
nodes and the entire planning horizon), along with a fairness (equity)
element.
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Fig. 1. Deprivation cost of different tiers as a function of time. The y-axis reflects the
cost (illustrative), and the x-axis the years.

3.1. Measuring deprivation cost and equity in power grid development

We assume that the deprivation cost is a non-decreasing (and con-
vex) function of time, i.e., as years go by and a certain node remains
in the same tier, its yearly deprivation cost increases. This assumption
follows Holguin-Veras et al. [11] which specifically use an exponential
deprivation cost and also exhibit a piecewise linear discretization of
that function. The justification of an exponential function is that the
socio-economic disadvantages of a population deprived of electricity
supply grow deeper with each year of exclusion. The deprivation is
measured in currency (e.g., $) and can be assessed, for example, using
the techniques presented in [14].

In our case, we assume that there are four possible tiers for electric
supply, in the following order:

» Tier 1: No electricity supply.

« Tier 2: Partial-low electric supply — provided by local solutions
(e.g., photo-voltaic cells).

+ Tier 3: Partial-high electric supply — provided by regional solu-
tions (i.e., a micro-grid).

« Tier 4: Full electric supply — full grid connectivity (connection
to the main grid).

Each tier has its own deprivation cost, i.e., a population with no
electric supply has the highest deprivation cost (because they are
completely deprived of electricity). Consumers with a partial electric
supply have a lower deprivation cost: they might have electricity for
part of a day (e.g., in the daytime) but at a low capacity (low Wattage)
and perhaps less reliable. Consumers with a full electric supply have
no deprivation cost (cost is zero) since they have a reliable electricity
supply at a high capacity. In addition, annual deprivation costs increase
over time.

Fig. 1 illustrates possible deprivation costs at the various tiers. The
figure shows Tier 4 without any cost (full grid connectivity) and Tier 1
with the highest cost. Fig. 2 illustrates the cumulative deprivation cost
at a node that transitions from Tier 1 to Tier 2 in year 8 and again from
Tier 2 to Tier 4 in the 12th year. From the 12th year to the end of the
planning horizon, the node is at the highest possible tier and, therefore,
does not accumulate additional deprivation costs.

3.2. Definitions and assumptions

First, we define node precedence.
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Fig. 2. The total cumulative deprivation cost over a 15-year horizon at a node that
shifts through different tiers.

Definition 1 (Node Precedence). Node j has a tier ¢ precedence to node
i, if a prerequisite to upgrade node i to tier 7 is that node j is upgraded
(or has been upgraded) to at least tier . We denote this relation as:

t
Jj—i m
If any of the nodes {j,...
denote this as:

,Jj.) has a tier 7 precedence to node i, we

jlv...vj,,—tu' 2)

This definition would apply in situations when a power line es-
tablished from the main grid to a specific target node i, has to go
through another node (one of {j,...,j,}) which is on some path to
the target node i. In other words, at least one of the nodes j, ..., j,
should be upgraded to tier 7 (no matter which one) before or at the
same time node i is updated to tier ¢. This definition is applicable mostly
for upgrades to the highest tier, though in some cases, it may also be
relevant for other tiers.

Assumption 1 (Node Upgrade Precedence). We assume that a hierarchy
of node upgrade precedence constraints can be expressed as an input
to the problem. Furthermore, we assume that when j; v... Vv, 5 i, the
cost for upgrading i does not depend on which of the nodes j, ..., j,
facilitated the upgrade of i.

Assumption 2 (Additive and Memoryless Deprivation Cost). When a node
is upgraded to a new tier ¢, its deprivation cost until the next upgrade
(if it occurs) is independent of the history of its previous tiers and the
respective duration it has spent in each previous tier.

We define the deprivation cost for node i being in tier ¢ for a
duration of d years by g;,(d). The cumulative costs according to Assump-
tion 2 and the node upgrade illustrated in Fig. 2 are provided below.
The node in the figure is upgraded from Tier 1 to Tier 3 at year 8 and
then upgraded to Tier 4 at year 12. The total deprivation cost of this
node (denoted as node i) up to year y is given by:

&) y<8
Tot. Cumulated Deprivation;(y) = 4 g;(8) + g5y —8) 8<y<12
8i1(8) + g3(4) Otherwise

The cost up to year y for y < 8 is given by the deprivation cost of
Tier 1 for the duration of y years, i.e., g;;(y). The additional cost in the
range 8 < y < 12 is given by g;;(y — 8), and the additional cost during
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y > 12 is 0, since the highest tier has been attained at y = 12 and it
does not incur any additional cost.

Assumption 3 (Identical Per Node Deprivation Costs). All individu-
als/consumers represented by a certain node are assumed to be iden-
tical, i.e., for a given tier f, all consumers in node i have the same
deprivation cost function.

In other words, Assumption 3 means that the functions depicted in
Fig. 1 are identical for all consumers represented by the same node.

3.3. Formulation as an optimization problem — The power grid equity
expansion problem

Let index ¢ represent the possible tiers t € {1,...,T} = 7. Let y
represent the years in the planning horizon y € {0,...,Y} = Y, and i
be a node at which there is electricity demand, i € {1,..., N} = N.

Node i represents the population of a city, town, village, or rural
location, where all individuals/consumers in the node are identical in
the sense that they require the same amount of electricity and have
the same deprivation cost. This simplifying assumption ensures that
deprivation cost can be expressed using a weighted average of nodes.
In fact, we require that the deprivation cost be proportional to the
population size, and we do not need individuals to be identical.

The parameters of the problem are:

« r;, the weight of node i, i.e., the total population at node i divided
by the total population in the country. Note that by definition,
>im=1

* B, the annual budget which is given to the planner at the
beginning of year y.

* Cityryy» the cost of upgrading node i from tier ¢, to tier ¢, at the
beginning of year y.

Recall that we used the function g;(d) to represent the deprivation
cost for node i being in tier ¢ for a duration d years.
The decision variables are defined Vi,z, y:

1
Xiry = {0

To express upgrade decisions at the beginning of each year, we use
Vi,y, t; <ty

if node i is at tier ¢ during year y
Otherwise

1 if node i is upgraded from tier ¢, to t,
at the beginning of year y
0  Otherwise

Uiy(tl’IZ) =

We use an auxiliary decision variable D;, to denote the duration of
node i in tier ¢, i.e., D;, = Zi:o Xir,- Then, the term Y, g;,(D;,) represents
the total accumulated deprivation cost of node i.

Let X denote a feasible solution in terms of the X iy decision
variables, i.e., X represents the entire upgrade plan for all nodes, tiers,
and years. To consider equity in the grid upgrade plan, we need some
measure of fairness or dispersion with respect to the deprivation cost
incurred by each node while also considering the weights of the nodes.
We shall use the Gini mean absolute difference Agy;(X).

Agini(X) = Z i Zgir(Dir) - Zgjt(Djr) 3
i.jeEN 4 4

The Gini mean absolute difference quantifies equity using the sum
of the difference over all pairs of nodes of a certain measure (such
as wealth or deprivation cost in our case) while weighing each dif-
ference. The multiplication by z;z;, which appears in Eq. (3), weighs
the difference between i and ;. Intuitively, larger differences express
inequity, but thanks to the multiplication by z;z;, large differences
between negligible nodes (with small populations) are less influential
than differences between large nodes. As the value of Ag;,; decreases,
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the solution becomes more equitable (see also [13], who use the Gini
mean absolute difference in a similar manner).

Additional benefits to using the Gini mean absolute difference are
that it is based on the deprivation cost and tiers of all of the nodes (not
just extreme values) and that it is closely related to the Gini index (the
numerator of the Gini mean absolute difference), which is widely used
in economic problems to measure inequity.

The Gini index is always between 0 (when all nodes have identical
values, i.e., complete equity) and 1 (when only one node has a positive
value, i.e., complete inequity) and is defined by:

Agini(X)
2% 7&:(Dy)

However, the Gini index is not linear, and this complicates the
efforts to define an objective function that is computationally tractable.
Hence, we adopt the approach of Gutjahr and Fischer [13], who use the

Gini mean absolute difference, i.e. the expression in Eq. (3). The Gini
mean absolute difference is included in the objective function using

G(X) =

the multiplier A, along with the expression which reflects the average
deprivation cost. The Gini mean absolute difference is relatively easy
to linearize within the objective function.

We now present the formulation in full, followed by a detailed
explanation of the constraints.

The goal is:

Y
min Z |:7r,- - 8 (Z X,-,y)] + Adgini ()?) )
y=0

1

subject to the following constraints:
T

Z X ity =1

1=1

T
z Xiry > Xity—l
T=t

Vie N,Vye Y (5)

Vy>1L,Vie N\.VteT (6)

t
Vy, and j; V...V j, > i (7)

T T
Z tXity - z tXity—l
=1 =1

= 2

1<t;<th<T

(ty =111, 1) VieN,Vy:1<yeY (8)

Y Uytt) £ Xy VieN Vi, eT Vy:1<yed (9)

1yt <ty <T

¥y [c,.,],zy,uiy,(zl,rz)] <Y B, Vyey  (10)
Y<y i<t Y<y

Xy o=1 Vie N (11)
Uyy(s. ) =0 Vs <{ <timoV¥yeY (12)

The objective function in (4) is comprised of two elements. The
first element relates to the solution’s effectiveness and is measured

in average deprivation cost (i.e., Y ; [n,- - & (Zyy=0 X, ,-,y>]). The second

element is the aforementioned Gini mean absolute difference, which
measures the inequity. The Gini mean absolute difference is multiplied
by 4 in the objective function. The A parameter can be increased or
decreased to reflect the importance that the planner/decision-maker
wants to give to equity.

The constraints (5) ensure that every node is assigned to exactly one
tier at each time in the planning horizon. The constraints (6) make sure
that it is only possible to upgrade a node from a low tier to a higher
tier.
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As Definition 1 states, we would sometimes like to require a node
upgrade to be permissible only when certain other nodes reach a spe-
cific tier. This is what the constraints (7) take care of. In the formulation
of (7), any one of ji, ..., j, is enough to allow the upgrade of i to tier .

Constraints (8) and (9) connect the X ity variables to their respective
upgrade decision variables U,,(t;,1,). They work in the following man-
ner: when no change in tiers is performed (when moving from y — 1
to y), the respective 1X;,, and 1X;,_, at the LHS of (8) cancel each
other, such that all the upgrade decision variables in the RHS must
equal zero. When an upgrade from tier ¢, to ¢, is performed for node
i in year y, we will have a value of #, — 7, on the LHS, and one of the
variables in the RHS which is multiplied by a value of (t,—1,), indicating
an upgrade of r, — 1, tiers. However, there might be more than one
such decision variable. The constraints (9) make sure that at most only
one of the U, (7, -) variables will have a positive value (because their
sum is bounded by an indicator which is at most one). Hence, the two
constraints combined make sure that only the correct U, (-,-) variable
will be positive, and the rest will be zero.

Constraints (10) set the budget: tier upgrades at a specific year y
cannot exceed the total budget B, for that year, along with the unused
budget in previous years. Note that money unspent in one year can
be spent in a future year. Constraints (11) make sure that each node
is initialized in its starting conditions, i.e., at its actual tier at the
beginning of the planning horizon: ¢, ;,;, at year 0. Constraints (12)
make sure that a node cannot be upgraded between tiers under its
initial tier.

In Appendix A, we explain how to modify the formulation and
turn it into a mixed integer problem (MIP), by linearization of the
deprivation costs.

We emphasize that the 1 parameter in the objective function reflects
a decision maker’s choice about balancing effectiveness versus equity.
It is interesting to study the effect that A has on the optimal solution
and on each of the two terms in the objective. We highlight a few
monotonicity properties regarding the Gini mean absolute difference,
the deprivation costs, and the Gini index as a function of A.

Lemma 1. As A increases, the value of the Gini mean absolute difference in
the optimal solution is non-increasing, the value of the average deprivation
cost in the optimal solution is non-decreasing, and therefore the Gini index
is non-increasing.

Proof. Assume A, and 4,, 0 < A, < 4,. Let X, represent the optimal
solution attained by setting A, (k = 1,2). We use the notation g, 4;, G,
to represent the average deprivation cost, the Gini mean absolute
difference, and the Gini index, respectively, attained at the optimal
solution when using 4, k = 1,2.

First note that due to optimality of X,, X,, the following holds:

at+hd S+ iid 13)
8+ hdy < g+ b4 as
Considering g, > g, or g; < g, we obtain (15) and (16) respectively:
0<g —8 A4 —4) =>4, > A (15)
0<g—g <4 —4)=> 4, >4, (16)
By combining (15) and (16) we obtain g, < g, < 4, < 4,, and also:
A(dy —A) <g — g S A4 — 4y a7

Since we assumed 0 < 4; < 4,, Eq. (17) indicates that 4, < 4;, and
therefore we obtain g, > g,. Since both g, 4, are non-negative we
obtain:
G =L _g as)
81 82

Hence, when 1 increases, the Gini mean absolute difference is non-
increasing, the deprivation cost is non-decreasing, and the Gini index
is non-increasing. []
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4. An LNS heuristic algorithm for the power grid equity expansion
problem

The problem we address can be shown to be NP-Hard by reducing
a special case of it to the knapsack problem. The special case has n
nodes and only two periods and two tiers. Then, the decision is which
nodes to upgrade to the higher tier in the first period, where node-
specific upgrade costs exist, and similarly, node-specific benefits (cost
savings in the second period) from upgrading it. Then, deciding which
nodes to upgrade under the period’s budget constraint reduces to the
knapsack problem. Thus, to solve large-scale instances, we employ an
LNS meta-heuristic approach. Following the Algorithm suggested in
[22], we initialize with a feasible greedy solution and then search
for improved solutions using “destroy and rebuild” operations. Note
that the terms ‘“destroy” and ‘“rebuild” relate to algorithmic steps
regarding the solution’s feasibility rather than the grid’s infrastructure.
Le., destroying (rebuilding) a solution means upgrading (downgrading)
different elements of the solution until it is no longer feasible (feasible)
in terms of budget. These are standard terms in the LNS literature.

A solution is defined as a two-dimensional array: one dimension is
the size of the planning horizon, and the other is the number of nodes.
The array values describe the grid states at each year and node (i.e.,
the node’s tier at each year). That is, the value in position year y,
node i in the array is the equivalent of ¥, tX;,, (which were defined in
the formulation of the problem in the previous section). Even though
it is possible to further reduce this representation to include only the
occasions in which a tier was changed (instead of the entire grid state),
we chose to use a full representation of the grid for convenience.

An upgrade decision is defined as increasing the tier of a specific
node i at a specific year y (and updating the grid in the following years
accordingly). The upgrade mechanism is subject to the same constraints
described in (5)-(9); however, it is not subject to the budget constraints
(10) which will be considered in future steps of the algorithm.

A downgrade decision is defined as lowering the tier of a specific
node i at a specific year y (and updating the grid in future years
accordingly). A downgrade cannot be to a lower tier than the previous
tier the node was in (prior to year y).

4.1. Initialization of the greedy solution

For the initialization of the greedy solution:

1. We map all the possible and feasible (in terms of budget) up-
grade decisions from the current grid state (i.e., create a list
of upgrade steps) and calculate the objective function value
associated with each upgrade step.

2. We iteratively choose one upgrade step at a time from the list.
The upgrade step that is selected is the step that has the lowest
objective value of all possible upgrades on the list.

3. After each selection, we omit the items from the list that are
no longer relevant (i.e., because of an upgrade that was already
applied or due to budget constraints).

4. The process continues until the list is empty.

The destroy and rebuild operations are then employed interchange-
ably.

4.2. The destroy function (violate feasibility)

In the following description, the term “destruction” relates to the
action of upgrading until the solution is no longer feasible because the
budget constraints are violated.

1. Similarly to the step described in the initialization of the greedy
solution, we map all the possible upgrade decisions from the
current grid state and calculate the expected objective function
value associated with each upgrade step.
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2. We associate a weight to each upgrade step, such that the weight
decreases as the objective value increases.

3. We randomly choose an integer, destruction degree, ranging
between one and a destruction degree upper bound (a parameter
of the algorithm).

4. We randomly choose upgrade steps according to their weights
until the budget constraints are violated, and then choose ad-
ditional upgrades according to the destruction degree chosen in
the previous step.

4.3. The rebuild function (regain feasibility)

In the following description, the term “rebuild” relates to the fact
that by applying enough steps from the “rebuild steps” list, some
upgrades are omitted, less budget is used, and no budget constraints
are violated. Feasibility is regained during this step.

1. A list of possible “rebuild steps” is generated, i.e., downgrade
steps that influence the excess use of budget in the violating
solution.

2. Downgrade steps are drawn until feasibility is restored (i.e.,
budget constraints are not violated throughout the planning
horizon).

5. Numerical study

The purpose of this numerical study is two-fold: in the first part of
this numerical study, we use a small instance that is solved to opti-
mality to examine the influence of the 4 and budget parameters on the
resulting upgrade plan. We also compare the optimal solutions to the
LNS meta-heuristic’s solutions on the same instances. We provide this
analysis using instances with varying deprivation costs and available
budgets. In the second part of this numerical study, we use larger
instances (100 and 200-nodes) which are solved only with the LNS
meta-heuristic, and examine this solution’s objective value compared
to a greedy solution’s objective value (to see the contribution and
performance of the LNS).

An analysis of the 10-node example is provided in Section 5.1,
followed by a case study which is based on the Myanmar power grid,
provided in Section 5.2 with 100 and 200-node instances.

5.1. The 10-node example

This small example was generated to make it easy to visualize,
analyze, and perform sensitivity analysis. The grid associated with the
example is illustrated in Fig. 3, where the arrows’ directions represent
node precedence. For example:

» Node 10 can be upgraded to Tier 2, but to upgrade it to Tier 3 or
4, Node 6 must also be upgraded to Tier 3 or 4, respectively.
Node 7 can be upgraded to Tier 3 if and only if Node 8 is
also upgraded to Tier 3. That is, they must be upgraded to Tier
3 together. The inspiration for such two-way precedence is a
micro-grid that is shared by several nodes.

Node 5 can be upgraded to Tier 4 if either Node 3 or Node 4 is
at Tier 4. That is, one or both of them should already be at Tier
4 or upgraded to Tier 4 in the same year Node 5 is upgraded to
it.

The size of each node in this grid represents the relative proportion
of the node’s population, and the node’s color (or darkness) represents
the tier to which it belongs initially.

We can see that two nodes (1, 2) containing 50% of the population
are initialized to Tier 4, while three other nodes (3, 4, and 5) are
initialized to Tier 3 and contain 30% of the population. Another three
nodes (6, 7, and 8) are initialized to Tier 2 and contain 15% of the
population. The remaining nodes (9 and 10) are initialized to Tier 1 and
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Fig. 3. The network of our sample instance with ten nodes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

contain only 5% of the population. In the figure, the x-y coordinates of
the nodes have no actual meaning.

Deprivation costs and upgrade costs are uniform between nodes and
years, that is, they only depend on the node’s tier. These costs are given
in Tables 1 and 2 respectively. Throughout the numerical study, we do
not include the cost incurred at the initial state (year 0) so that given
an infinite budget, the deprivation costs are 0.

At each tier level, we assume that the deprivation cost function
takes the form e?*¥ — 1 as a function of y. The value of 6 depends, of
course, on the tier. Note that this is a dimensionless quantity, which
should be multiplied by a factor to measure the deprivation costs in
monetary units. However, such a factor would not play a role since the
objective function is the only element within the model, which includes
the deprivation cost, and other costs (the upgrade costs) appear only in
the constraints.

We consider five cases for the four-tier values of 6; see Table 1.
The first is the base deprivation cost, and the other three variations
are multiplications of the deprivation cost parameter by x2, x1/2, and
x1/4. Another variation (i.e., the “tenfold” instance) contains 6 €
{0,1,10,100} according to the tier.

Regarding the upgrade costs in Table 2, note the following observa-
tions (costs in thousands of dollars):

» Upgrading from Tier 1 or Tier 2 to Tier 4 has the same cost ($55).
In this case, an upgrade from Tier 2 does not reduce the cost of
an upgrade to Tier 4.

» Upgrading from Tier 1 or Tier 2 to Tier 3 has the same cost ($15).
A similar explanation as in the previous case also applies here.

» Upgrading from Tier 3 to Tier 4 is slightly less expensive than
upgrading from Tier 1 or 2 to Tier 4 ($45 versus $55). This is
because it is assumed that some of the infrastructure has already
been laid down on the upgrade to Tier 3.

We used the linearized version of the power grid equity expansion
optimization problem to find the optimal expansion plan for the above
instance while using the following parameters:

+ Planning horizon of 15 years.
+ A varies in {0,0.25,0.5,1,3,30,1000}. When 4 = 0, no weight is
given to equity, so only deprivation costs are minimized.
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Table 1
The base variation of deprivation costs. The values in the table describe the § parameter
of an exponential deprivation cost, i.e., e™ — 1.

Deprivation cost

Multiplications of 6 Tenfold
Tier Base Double Half Quarter Variation
1 0.1 0.2 0.05 0.025 100
2 0.08 0.16 0.04 0.02 10
3 0.06 0.12 0.03 0.015 1
4 0 0 0 0 0
Table 2
Upgrade costs between tiers for our sample instance with ten nodes.
Tier Upgrade cost
From To [thousand $]
1 2 5
1 3 15
1 4 55
2 3 15
2 4 55
3 4 45

+ Budget varies in {300,500, 1000} (this is the total budget over the
planning horizon so that the annual budget is divided by 15).

5.1.1. Results for the 10-node example

To compare the resulting upgrade plans, we use the Gini index
with respect to the incurred deprivation cost at the nodes. The Gini
measure is commonly used to examine inequity between populations.
Even though it does not directly appear in our objective function, it can
represent both measures used in our objective: as noted earlier, it is the
ratio between the second element (the Gini mean absolute difference)
to the first element of our objective (average deprivation cost). Among
other things, we will explore the rate of decrease of the Gini index when
the multiplier 1 on the Gini mean absolute difference increases.

The instances were solved to optimality on an i19-9900K @ 3.6 GHz,
an 8-core server running IBM CPLEX 12.9 within the allotted time
frame of three hours (and, in most cases, in only a few minutes). The
results are given in Table 3: each row relates to a different combination
of deprivation cost variation and budget. Each column (starting from
the third column) indicates a different A. In total, the solutions of 90
instances are shown in the table. The numbers within the table indicate
the Gini index of the solution. The Gini index values in boldface
indicate that a decrease in the Gini index is observed as compared to
the previous A value.

As expected, the Gini index values of the obtained solutions are non-
increasing in the A parameter. This numerically validates the statement
of Lemma 1. In certain cases, increasing the A parameter does not
change the solution (and the Gini index does not change). However,
increasing this parameter in other cases caused the Gini index to
decrease. For example, in the quarter cost deprivation variation, budget
300, we see that the Gini index decreases for at least two A values: once
for 4 € (1,3] and the second time when 4 € (3,30]. Changes at 4 = 1000
were not detected in any of the instances (hence, this column is not
included in Table 3).

To examine the behavior of the Gini index as a function of 4 at
an even higher resolution, we singled out a specific instance and ex-
plored the optimal solution with additional A values. The Quarter Cost
instance, with budget 300, and 4 € {0,0.25,0.5,1,2,3,5,7.5,8,9,10} was
chosen due to the changes observed in Table 3 for 4 = 1, 3, 30 resulting
in Gini indices of 0.703, 0.692, and 0.609 respectively. We found that
the decrease to the minimal Gini index is actually already apparent for
A = 8 and occurs within the interval A € (7.5,8], as can be seen in
Fig. 4. This subtle change is, in fact, derived by meaningful changes
to the upgrade plan, as illustrated by Fig. 4. For A > 8 the solution
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Table 3

Gini index as a function of A for the 10-node example.
Instance Budget 4=0 A=025 1=05 i=1 A=3 A=30
Base variation 300 0.715 0.715 0.715 0.695 0.695 0.695
Base variation 500 0.737 0.733 0.733 0.733 0.733  0.732
Base variation 1000 0.766  0.765 0.765 0.765 0.761 0.761
Double cost 300 0.704 0.704 0.694 0.694 0.694 0.694
Double cost 500 0.742  0.742 0.742 0.742  0.742 0.731
Double cost 1000 0.771  0.765 0.765 0.765 0.765 0.765
Half cost 300 0.707  0.707 0.707 0.707 0.707 0.613
Half cost 500 0.733 0.733 0.733 0.727 0727 0.727
Half cost 1000 0.762 0.758 0.758 0.758 0.758  0.758
Quarter cost 300 0.703 0.703 0.703 0.703 0.692 0.609
Quarter cost 500 0.731 0.731 0.731 0.729 0726 0.678
Quarter cost 1000 0.760 0.756 0.756 0.756  0.756  0.756
Tenfold cost 300 0.693  0.69 0.69 0.69 0.69 0.657
Tenfold cost 500 0.705 0.698 0.686 0.684 0.683 0.642
Tenfold cost 1000 0.681 0.68 0.68 0.68 0.68 0.634

remains the same as for 4 = 8. For 4 < | the solution is the same as in
A =1, the change occurs within the interval A € (1,2]. For 1 = 2, the
solution is the same as in the 2 < 4 < 7.5 range. This justifies using the
A parameter in the objective function as an equity weight parameter
that can be tuned.

We use this example to examine the properties and differences
between the solutions of the two extreme cases, where 1 = 1 versus
A = 8. Fig. 5 shows the node upgrade decisions for the two A values
where each box represents a different node. Nodes 1 and 2 started at
the highest tier (4) and clearly remain at that tier, therefore excluded
from the figure. The x-axis represents the years (0 is the initial year,
and 14 is the maximum year), and the y-axis represents the tier level
1-4).

As noted in Fig. 4, when 4 increases from A =1 to A = 8, there is a
change in the Gini index: a decrease of 13.4% from 0.703 to 0.609. This
subtle change is, in fact, derived by meaningful changes to the upgrade
plan: the actual difference between the two solutions is apparent in
all nodes. For example, when A = 8, Node 9 is upgraded much earlier
(year 1) and to a higher tier (Tier 3) compared to A = 1 (year 8, Tier
2). Since this node represents a small population that starts at a low
tier, an early upgrade of it increases the overall equity. A similar effect
can be observed in nodes 7-8 and 10. In contrast, nodes 4 through 6
are upgraded later when A = 8. Since these nodes start from a higher
level (Tier 3), postponing their upgrade increases the equity. Thus, the
increase of A brought more upgrades (sooner and higher) to the smaller
nodes (with less population), which were at a lower tier.

With respect to the budget, in most cases, we observe that the
Gini index increases as the budget increases. This is because as the
budget increases, additional upgrade opportunities open up, and up-
grades are applied earlier in the planning horizon and across the board.
When nodes are upgraded sooner, specifically nodes with large popula-
tions, the equity decreases, compared to more budget-constrained cases
where emphasis can be put on the smaller population nodes. However,
it is hard to generalize the influence of the budget on the Gini index. It
may increase or decrease as the budget increases. For example, in the
tenfold instance (the last three lines in Table 3), as the budget increases
from 300 to 500 and then to 1000, combined with 1 = 0.5, the Gini
index decreases.

With respect to the deprivation parameters, two factors characterize
the instance: the parameters’ value and the ratio between tiers (i.e., in
the first four groups of instances of Table 1, the ratio is the same, and
the absolute value changes, and in the last “tenfold” group of instances,
the ratio is 10). We notice that as the value of the parameters increases
(in the first four groups), the Gini index also increases in most cases.
However, the last group of instances exhibits a lower Gini index overall.
We believe this is due to the extreme cost of maintaining a node at a
lower tier, which encourages its early upgrade, which in turn increases
equity.
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5.1.2. Comparison of the optimal, Ins, and greedy solutions

To compare the performance of LNS and CPLEX, we executed the
LNS algorithm on 10-node instances, imposing a time limit of 15 min
per instance. The results indicate that the LNS metaheuristic achieves
a solution that is on average 18% higher than the optimal solution
(obtained by CPLEX).

Fig. 6 illustrates the percentage decrease in the objective function
for both the LNS metaheuristic and the CPLEX optimal solution, starting
from the greedy solution (categories on the x-axis), along with the
number of instances falling within each decrease range (on the y-
axis). We note that in most cases, both LNS and CPLEX successfully
reduced the greedy solution by 40%-60%. However, CPLEX exhibits
an advantage in the 40%-60% category and also in the 60%-80%
category, while LNS is more prevalent in the 0%-20% and 20%-40%
categories.

This comparison between LNS and CPLEX cannot be performed on
larger grids since the CPLEX cannot solve large problems. The following
section extends our analysis to another numerical study focusing on the
LNS solution method for larger grids.

5.2. Power grid expansion in Myanmar

Myanmar is a developing country that lies in Southeast Asia. Myan-
mar’s population is roughly 54 million. As of 2019, it was estimated

that only around 60% of the country’s population had access to elec-
tricity; see the [23]. Myanmar’s authorities, along with the World Bank,
have initiated a “National Electrification Project” aimed at increasing
the population’s access to electricity by means of grid connectivity
and off-grid solutions such as PV cells, see the [8]. The plan includes
cumulative investments of up to $6 billion by 2030. The project aims
to bring electricity to everyone in Myanmar by 2030.

Using public data available on [7] (2014-2015) for Myanmar’s
population and existing medium voltage power grid infrastructure at
that time, we analyzed the expansion plan for Myanmar that would
minimize the total weighted deprivation-equity cost, according to our
model. The data we are using contains:

+ The coordinates of medium voltage transmission lines throughout
Myanmar.

+ A list of all Myanmar cities and villages, including location (co-
ordinates) and population size.

Unfortunately, the mentioned data sources do not include crucial infor-
mation such as:

+ Current tier states, i.e., which settlements have electricity, and in
what form (on-grid or off-grid).

+ Upgrade prices for moving from one specific tier to another.

+ Deprivation costs for the population.
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Fig. 6. A comparison of the CPLEX and LNS solution methods on 10-node instances.

In place of the missing data, we made several assumptions. First, we
ran the KMeans clustering algorithm on the network to scale down the
number of decision variables to a tractable size: from about 50k nodes
representing cities, villages, and other types of settlements to either 100
or 200-clustered nodes (i.e., 100-node instance and 200-node instance
respectively). Clusters were then assigned an initial tier according to
their distance from the power grid’s transmission lines. The population
size of each cluster was determined according to the actual population
at the nodes that are associated with the cluster. Upgrade costs of the
clusters were set as a function of the cluster’s distance from the power
grid’s transmission lines and of the population size that the cluster
represents.

+ The planning horizon was set as 15 years.

+ We examined two sets of deprivation cost parameters for the
100-node instance (“base deprivation cost” using 6 € {0.05,0.04,
0.03,0}, and these 0 values multiplied by two, i.e. “double the
deprivation cost”). For the 200-node instance, we used the base
deprivation cost set.

» We used three budget levels for each instance.

— For the 100-node instances, the annual budget levels were
set as 401, 1053, and 1705 (per year). The high budget level
is equivalent to the budget required to upgrade all nodes to
the highest tier (tier four), if it is provided as a lump sum
(aggregated instead of annually), the lowest budget level is
equivalent to upgrading all nodes to tier three (or higher),
and the middle budget level is their average.

— For the 200-node instances, the annual budget levels were
set as 441, 883, and 3494 (per year). The high budget level
is equivalent to the budget required to upgrade all nodes
to the highest tier (tier four), the medium budget level is
equivalent to upgrading all nodes to tier three, and the
lowest budget level was set as half the budget of the medium
budget level.

« Five values of 4 € {0,0.5,1,2.5,4}.

Additional technical details, data pre-processing procedures, and
assumptions we have made to generate the problem of the Myanmar
case study are provided in Appendix B.

We now analyze the results of the LNS.

5.2.1. The Myanmar case study: Results

We ran each instance with a compute time limit of 10 h for 100-
nodes and 20 h for 200-nodes. To analyze the LNS-heuristic’s ability
to identify good solutions, we compare the objective value of the LNS
result to the value obtained by the first step of the algorithm, which
corresponds to the greedy solution. We note that the greedy algorithm
is not meant as a benchmark against the LNS solution quality but rather
as an indication that the LNS algorithm can improve a naive greedy
approach. Fig. 7 shows the improvement of the heuristic over the initial
solution (in the y-axis) as a function of the equity parameter i (the
X-axis).

We observe a large improvement over the greedy heuristic, mostly
for A = 0 (between 17%-58% decrease, and about 40% on average).
This improvement generally decreases when A is increased. While it is
unclear what causes this performance difference when A changes, we
believe this is possibly due to the characteristics of the greedy solution,
which performs well when a higher weight is assigned to the equity
portion of the objective function.

Another observation is that as the budget decreases, the improve-
ment that the heuristic achieves is generally lower. This is probably
because the heuristic’s search space is limited at lower budget levels,
and there are not that many improving solutions. When comparing the
100-node to the 200-node solution improvements, we observe that the
latter improvement is smaller. This is because even though the search
space is much larger for 200-nodes, the heuristic may reach a smaller
portion of it (compared to 100-nodes). Finally, there is no significant
difference in performance comparing the 100-node and the 100-node
double deprivation cost instances.

Fig. 8 shows the convergence of the LNS for the 100-node instance
and A = 0. The x-axis shows the iteration number (in a logarithmic
scale), and the y-axis shows the decrease from the initial (greedy)
solution. We observe that even though the heuristic keeps improving
the solution throughout its entire run-time, the rate of improvement
decreases over time, i.e., the chart shows a somewhat linear trend
in log(iteration). This behavior is typical in additional instances we
examined (except for cases where the LNS did not improve upon the
greedy solution).

To analyze the development of tiers as a function of time, we have
computed the average tier of nodes in two of the 100-node instances.
The nodes are grouped into three types: those starting at Tier 1, Tier
2, and Tier 3. Fig. 9 includes the average tier of nodes of the three
types: nodes that start at Tier 1 are on the upper row (two sub-figures),
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nodes that start on Tier 2 are in the second (middle) row, and nodes
that start on Tier 3 are in the third (lower) row. The figure illustrates
the development of nodes of each type as a function of the year, for
4 € {0,4} and two budget levels (low budget level on the left column
and high budget level on the right column).

Several noteworthy observations can be made from the figure. First,
as the parameter 4 increases, the nodes that initially belong to lower
tiers are upgraded earlier and to higher levels. This trend can be
observed especially in the top row. In both budget scenarios, for 1 =4,
the Tier 1 nodes undergo upgrades within the first few years, while
for 4 = 0, such upgrades are delayed. For Tier 2 and Tier 3 nodes,

10

the two lines (for the different A values) are closer to one another and
are less affected by the A value. These observations are similar to the
observation about the small instance in Fig. 3.

Second, notable differences can be observed between the two bud-
get levels. With a high budget, upgrades can reach all nodes’ maximum
or nearly maximum tier level. In contrast, lower budget levels limit
upgrading capabilities, even by the end of the planning horizon.

Third, when comparing the different tiers on the left column for
the case of 4 =4, it is noteworthy that the Tier 1 nodes (top row) end
up being upgraded to an average tier slightly above 3, while the Tier
2 nodes (middle row) are upgraded to an average tier slightly above
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2.5. This phenomenon is intriguing because the second row represents
a greater population than the top row, and one would expect their
average tier to be either higher or the same (as observed when A = 0).
However, due to the higher deprivation cost accumulated by the nodes
in the top row during the initial years of the planning horizon (owing
to their lower starting point), they are upgraded to a higher level
to offset that deprivation cost (for equity). This highlights a memory
property for the deprivation cost in our modeling approach due to the
accumulation of the deprivation costs over time.

This prompts intriguing policy implications and points for discus-
sion. One key consideration is the timeframe over which policymakers
should account for the accumulated deprivation cost within the popu-
lation: policymakers can either employ a long-term memory approach,
taking into consideration historical deprivation costs, or a short-term
memory approach. Another consideration is how far into the future
policymakers project. Future models can explore this perspective by
incorporating a discount factor on the yearly deprivation cost.

6. Conclusions

In this article, we studied the problem of power grid expansion
planning from both effectiveness and equity perspectives. Our model
minimizes an objective function which balances the deprivation costs
that aim to reach effective solutions with the Gini mean absolute
difference that aims toward fair (equitable) solutions. This balancing is
performed by a weight parameter that multiplies the equity elements of
the objective. This approach is especially useful in developing countries
where some of the population has yet to be connected to the power
grid. To the best of our knowledge, this is the first work considering
both objectives in a power grid expansion optimization problem.

We first formulated the problem as a MIP and then solved it on a
10-node arbitrary instance. We varied some of the parameters, such as
budget, deprivation cost, and equity weight, to gain insights into the
solutions obtained and their influence on the Gini index. The results
demonstrate that as the weight of equity increases (the multiplier 1),
the optimal solution has a non-increasing equity measure (Gini index),
as expected by Lemma 1.
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We then developed an LNS search heuristic for solving large in-
stances and tested it on instances with 100 and 200-nodes that were
generated from real-world data based on the Myanmar power grid. The
results demonstrate that the LNS can significantly improve over a naive,
greedy approach. However, this is mainly true for lower values of A.

Grid planners can use the model we developed to resolve various
strategic dilemmas. For example, the model balances main grid con-
nectivity and upgrades to densely populated areas relative to remote
areas that use simple, local solutions such as photovoltaic cells or
microgrids. Another strategic question is whether the planner should
invest in small incremental steps that provide fast results or large
ground-breaking steps (e.g., significant infrastructure enabling full grid
connectivity) that provide long-term results. In general, investing in
significant upgrades means that it takes longer to reach a desired grid
state, i.e., one that is both effective and equitable. In contrast, investing
in small incremental steps means a better solution is obtained in the
short run, but reaching the desired grid state might not be achievable
within the planning horizon. It is not an easy task to figure out how
to balance the two, and the model suggested in this work can provide
some guidance. Further developments to the model can include a bi-
objective paradigm (an efficiency frontier), instead of a single objective
with a weight parameter.

The models and solution methods presented in this work can be
applied to a wide range of use cases of infrastructure planning, in which
the planning problem consists of populations that obtain different tier
levels, either within cities or nationwide. Some examples are internet
infrastructure, road maintenance, cellular infrastructure, healthcare,
and more.
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Appendix A. Piecewise linearization of the g, (D;,) functions

The formulation we presented in Section 3 is a non-linear inte-
ger programming formulation due to the objective function, which
introduces a convex term for the deprivation cost and the absolute
value within the Gini mean absolute difference. We now show how to
linearize the two expressions in the objective function.

First, we discretize the deprivation cost function to represent the
deprivation cost at the beginning of each year. Since, in the original
formulation, we allow for node upgrades only at the beginning of
each year, this linearization of the objective coincides with the original
objective’s value (in the original formulation).

Second, we also linearize the absolute value terms in the objective
function (inside the Gini mean absolute difference). The standard lin-
earization method of absolute value we use here makes the optimal
solution of this linearized version coincide with the optimal solution of
the original problem.

Define the decision variables v;

itm
1
Vitm = 0

Define the decision variables y;,,, as:

1
Hitm = 0

The decision variables Z;; will hold the absolute value of the
deprivation cost difference between node i and node j in the optimal
solution.

as:

If node i has been in tier ¢ for at least m years
Otherwise

If node i has been in tier ¢ for exactly m years
Otherwise

To define v;,,, we use the following constraints:
k+m—1
Vim 2 D Xy —m+1 VieN,teT,meY,ke(0,..,Y —m)
y=k

(A1)

In other words, if there is a combination of (at least) m consecutive
years in which node i is at tier 7, then v, will equal one.

Set y;,,, as an indicator variable such that y;,,, = 1 if and only if node
i was at tier ¢ for exactly m years. To define y;,,,, we use the following
constraints:

ViEN,teT,m<Y (A.2)

Hitm = Vitm = Vitm+1

Hiry = Viey VieN,teT (A.3)
Y
2;4,-,,,,: WieN,teT (A.4)
m=0

We can see the validity of Constraints (A.4) by examining the expres-
sion v;,,, — Vymy1- It will equal one if and only if node i was exactly m
years in tier

Vitm = Vitm+1 = l =

Vim=1land v;,,,; =0 <

k+m k+m+1
Jk such that: Z Xy, =m and Vk: Z Xy <m
y=k y=k

However, this condition is insufficient since we have not linked the y;,,,
variables to transitions between different tiers. In other words, for every
i, we must make sure that the total number of years depicted in all
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combinations of y,,, does not exceed the total planning horizon of the
problem:

T Y
Z Z My, =Y Ni €N

(A.5)
t=1 m=0
And we define the range of the v;,, variables:
Viem € {0, 1} VieEN,teT,me. (A.6)
The updated objective function then becomes:
min Z 7081 (M) Ui + Aging (A7)
ti,m
where the Gini mean absolute difference is given by:
Agini = Z iz Z it (M) i — Z gt (M), (A.8)

i,jEN t,m t,m

To incorporate Ag;,; into the objective function (while keeping our
problem a mixed integer linear programming), we define a set of
variables Z;; with the following set of constraints:

Z;2 Y My — Y &My Vi j €N (A.9)
t.m tm
Zjz - <2 it (Mg — z gjr(m).ujtm> vi,jeN (A.10)
tm tm

This formulation is a standard technique that is used when absolute
values appear in a mixed integer linear setting. It allows us to retain
the linearity: Z;; are always non-zero, and they will attain the absolute
value of the expression ¥, g;(m)iip, — X, , &;:(M);¢,- Since the objec-
tive is a minimization problem, they will not exceed the absolute value
of this expression.

The final updated objective function of our problem is of the form:
min Z 7,85 (M) gy, + A z Ly

t,i,m i.j

(A11)

subject to the original constraints (5)-(12) along with the new con-
straints (A.1)—-(A.10).

Appendix B. The Myanmar case study — assumptions and pre-
processing

This appendix describes how we processed the Myanmar data set
and the assumptions we made to generate the Myanmar optimization
instances.

First, we extracted transmission line coordinates and population
coordinates from [7], specifically the two data sets titled: “Myanmar
- Cities and Town Location with Population” and ‘“Myanmar - Existing
Grid Medium Voltage Line Data”. Then, the various villages and cities
were clustered together using a KMeans clustering approach, using the
standard kmeans function [24]. The cluster centers will represent the
cluster and will be the new nodes we will consider in our optimization.
These nodes (for the 100-node instance) are depicted in Fig. B.10,
subfigure (A).

Fig. B.10 (subfigure B) illustrates the power grid transmission line
infrastructure. It can be seen that the medium voltage transmission
lines do not extend to the edges of the map, and for the most part,
medium voltage transmission lines are necessary to provide grid con-
nectivity to consumers. Hence, by measuring the distance from an area
to the nearest transmission line, we can assume it is either connected
or disconnected from the power grid (as the distance from the nearest
medium voltage transmission line increases, it is less likely the node is
connected to the power grid).

The population size at each node is determined according to the
total population in the original elements (cities and settlements) that
comprise the respective cluster. The distance between a cluster and
the medium voltage transmission infrastructure is defined as follows:
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(A) Clustering and tier allocation

25

N
S

Latitude

92 94 96 98 100
Longitude
Start tier 1 2 4 3 4

Latitude

(B) Transmission lines

25

n
S

92 94 96 98
Longitude

100

Fig. B.10. (A) The clustering and tier allocation results for the 100-node instances, represented on the Myanmar map. (B) The medium voltage transmission line infrastructure.

Each point represents an element in the transmission line network.

the cluster is broken into its elements (original villages and cities).
The shortest distance from each element to the medium voltage trans-
mission line infrastructure is computed, and their average is set to be
the distance. The tier is determined according to the above cluster’s
distance from the medium voltage transmission infrastructure. Nodes
that are on the grid (up to 10 km from an existing medium voltage
transmission line coordinate, i.e., the existing grid) were set as Tier 4
(full grid connectivity), and we controlled the algorithm so that these
points will cluster into a single node (and the rest 99 nodes or 199
nodes are at a lower tier, in the case of the 100-node instance or 200-
node instance, respectively). Nodes that are further than 150 km from
the grid were set as Tier 1, nodes between 50-150 km from the grid
were set as Tier 2, and nodes between 10-50 km from the grid were
set as Tier 3.

For the upgrade cost model, we used either the node’s distance from
the grid if upgrading to tier four or the population size at the node
if upgrading to a tier lower than four. This logic is derived from the
fact that tier four is full grid connectivity and requires a transmission
line setup from the node to the power grid. Usually, the setup of a
transmission line is a function of the distance. The upgrade to lower
tiers (one through three) does not require grid connectivity. Still, its
scale is related to the population size (i.e., if installing household
photo-voltaic cells or micro-grids).

The final upgrade prices were set according to Formula (B.1):

Ifr<4
Ifr=4

In(c ) x (population) + k,

Uiy(s.0) = {ln (c,,) X (distance to grid) + k, ®.1)

The coefficients c,, are presented in Table B.4.
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Table B.4

Upgrade cost coefficients for the 100 and 200-node instances in Myanmar.
From tier To tier Coefficient Constant
s t Coy k.
1 2 2.5 1
1 3 15 5
1 4 30 15
2 3 15 5
2 4 25 15
3 4 20 5
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